【家庭で教える算数】くり上がりのあるたし算:2つのやりかたと指導のしかた(小学1年生)

※ 当サイトは、アフィリエイト広告を利用しています。

9+3 はどうやって計算する?

これはほとんどの人が、次のように計算するでしょう。

9+3 = (9+1)+2 = 10+2 = 12

では、3+9 は?

くり上がりのあるたし算では、「3+9」のように前の数(被加数)よりも後ろの数(加数)が大きいとき、後ろの数を前の数に足すか、前の数を後ろの数に足すかが、問題になります。

これについてどう指導したらよいか、これが今回の記事のテーマです。

くり上がりのある足し算 2つの足し方とそれぞれのメリット

それでは、3+9 を二つの方法で計算してみましょう。
どちらが計算しやすいか、比べてみてください。

【方法1】 加数分解:後ろの数を分解して前の数に足す。

+9 = (3+7 )+2   👈 9を7と2に分解
= 10+2   👈 3に7を足して10
= 12   👈 10に2を足して12

【方法2】 被加数分解:前の数を分解して後ろ数に足す

+9 = 2+(+9 )   👈 3を2と1に分解
= 2+10   👈 1を9に足して10
= 12   👈 2を10に足して12

この二つの方法には、それぞれ利点があります。

加数分解(方法1)のメリット

・自然な流れで計算できる

一般に、たし算の式「A+B」は、「A(被加数)にB(加数)を加える」という見方をします。
方法1は、この流れに逆らうことなく計算することができます。

また、最後に答えを導き出すときも、「102を足して12(=10212)」というように、計算での数の並びがそのまま答えになります。
方法2では、「210に足して12(=21012)」というように、数の並びを入れ替えなくてはなりません。

被加数分解(方法2)のメリット

・足される数は、大きい数のほうが10の補数を把握しやすい。

3にいくつ足すと10になるかを考える(方法1)よりも、9にいくつ足すと10になるかを考える(方法2)ほうが容易です。
一般に、10に近い数ほど瞬時に補数を把握できます。

・足す数は、小さい数のほうが分解しやすい。

9を7と2に分解する(方法1)よりも、3を1と2に分解する(方法2)ほうが容易です。
一般に、小さい数ほど瞬時に分解できます。

くり上がりのあるたし算の足し方 どう指導すればよい?

最初に述べたように、「9 + 3」のように前の数が後ろの数より大きい場合は、後ろの数を前の数に足すことと、小さい数を大きい数に足すことが両立するので、方法1で計算するのが普通です。
方法2で計算する理由がありません。

しかし、「3 + 9」のように後ろの数のほうが大きい場合は、この二つが両立しないので、どちらかの方法を選択して計算することになります。
このようなひと桁の数の組み合わせは、次の16通りあります。




2+9


3+8
3+9

4+7
4+8
4+9
5+6
5+7
5+8
5+9

6+7
6+8
6+9


7+8
7+9



8+9

全てを方法1で計算するという人もいますが、一般的な傾向として、前の数が4以下になると(左の3列)、方法1では計算しずらくなります。

そのため、「6+7」は方法1(加数分解)で計算するけれども、「2+9」は方法2(被加数分解)で計算するという人が多くいます。

このとき、どの組み合わせを方法1で、または方法2で計算するかは任意です。

ちなみに、僕の場合はこうなります。

  • 2+9 → 方法2
  • 3+8,9 → 方法2
  • 4+7,8,9 → 方法2
  • 5+6,7,8,9  → 方法1
  • 6+7,8,9 → 方法2
  • 7+8 → 方法1
  • 7+9 → 方法2
  • 8+9 → 方法2

学校での指導はというと、児童に加数分解、被加数分解を通じて「10のまとまり」をつくるという基本を理解させたうえで、各自のやり方を尊重する、という方針のようです。

指導のあり方としては、よいのではないでしょうか。
ナンバーセンスを養うためには、「数の大きさや組み合わせに応じて柔軟に対応する」ことが重要だからです。

ただ、学校の授業だけではどうしても理解が不十分だったり、練習が不足したりしてしまうことがあるので、その部分は家庭の学習でしっかり補ってあげる必要があります。

やり方としては、ドリルやプリントなどの「被加数<加数」の問題について、最初のうちは、一問一問、二つの方法で計算させ、どちらがやりやすいかを比較をさせるようにます。

狙いは、どちらのやり方でもスムーズに計算できるようにしておくこと、それと「柔軟に対応する」ことへの意識づけです。

この最初の段階をしっかりやっておくと、「3+9には被加数分解を用い、43+9には加数分解を用いる」というような対応も可能になります。

そうやって、最終的には自分のやりやすいほうを自然に選択して計算できるようになればよいです。

すみりょう

子どもの学びに関する多くの学術的知見を持っています。
また、6歳児から中高校生まで勉強を教えた経験があり、学力に与える学習の効果は、年齢が低いほど大きいことを痛感しています。
これらを生かして、効果的で再現性の高い子どもの学びのあり方や方法を提案していきます。よろしくお願いします。

フォローする
タイトルとURLをコピーしました